Client in Python
Query
GET CSV
import requests
params = {"q":"select * from example", "format":"csv", "heading":"false"}
response = requests.get("http://127.0.0.1:5654/db/query", params)
print(response.text)
Write
POST CSV
import requests
csvdata = """temperature,1677033057000000000,21.1
humidity,1677033057000000000,0.53
"""
response = requests.post(
"http://127.0.0.1:5654/db/write/example?heading=false",
data=csvdata,
headers={'Content-Type': 'text/csv'})
print(response.json())
Example - matplotlib
📌
To write test data, use the command below from the Write waves by shell.
sh gen_wave.sh | machbase-neo shell import --timeformat=s EXAMPLE
Python code
import requests
import json
import datetime
import matplotlib.pyplot as plt
import numpy as np
url = "http://127.0.0.1:5654/db/query"
querystring = {"q":"select * from example order by time limit 200"}
response = requests.request("GET", url, params=querystring)
data = json.loads(response.text)
sinTs, sinSeries, cosTs, cosSeries = [], [], [], []
for row in data["data"]["rows"]:
ts = datetime.datetime.fromtimestamp(row[1]/1000000000)
if row[0] == 'wave.cos':
cosTs.append(ts)
cosSeries.append(row[2])
else:
sinTs.append(ts)
sinSeries.append(row[2])
plt.plot(sinTs, sinSeries, label="sin")
plt.plot(cosTs, cosSeries, label="cos")
plt.title("Tutorial Waves")
plt.legend()
plt.show()
Example - pandas
Load dataframe from table
- Load pandas dataframe from machbase-neo HTTP API.
from urllib import parse
import pandas as pd
query_param = parse.urlencode({
"q": "select * from example order by time limit 500",
"format": "csv",
"timeformat": "s",
})
df = pd.read_csv(f"http://127.0.0.1:5654/db/query?{query_param}")
df
Write dataframe into table
- Write pandas dataframe into a tag table via machbase-neo HTTP API.
import io, requests
stream = io.StringIO()
df.to_csv(stream, encoding='utf-8', header=False, index=False)
stream.seek(0)
file_upload_resp = requests.post(
"http://127.0.0.1:5654/db/write/example?timeformat=s&method=append",
headers={'Content-type':'text/csv'},
data=stream )
print(file_upload_resp.json())
{'success': True, 'reason': 'success, 500 record(s) appended', 'elapse': '2.288791ms'}
Load CSV
Import pandas and urllib.
from urllib import parse
import pandas as pd
Make query url for "format": "csv"
option, then call read_csv
.
Use timeformat
to specify the precision of time data. s
, ms
, us
and ns
(default) are available.
query_param = parse.urlencode({
"q":"select * from example order by time limit 500",
"format": "csv",
"timeformat": "s",
})
df = pd.read_csv(f"http://127.0.0.1:5654/db/query?{query_param}")
df
Load compressed CSV
Read gzip’ed CSV from HTTP API.
from urllib import parse
import pandas as pd
import requests
import io
query_param = parse.urlencode({
"q":"select * from example order by time desc limit 1000",
"format": "csv",
"timeformat": "s",
"compress": "gzip",
})
response = requests.get(f"http://127.0.0.1:5654/db/query?{query_param}", timeout=30, stream=True)
df = pd.read_csv(io.BytesIO(response.content))
df
Last updated on